Abstract

Simple SummaryInsects are frequently attracted to animal and human cadavers, usually in large numbers. The practice of forensic entomology can utilize information regarding the identity and characteristics of insect assemblages on dead organisms to determine the time elapsed since death occurred. However, for insects to be used for forensic applications it is essential that species are identified correctly. Imprecise identification not only affects the forensic utility of insects but also results in an incomplete image of necrophagous entomofauna in general. The present state of knowledge on morphological diversity and taxonomy of necrophagous insects is still incomplete and identification of immature and female forms can be extremely difficult. In this study, we utilized molecular identification methods to link conspecific sexes and developmental stages of forensically important flies. We identified larvae and females of flies collected from animal and human cadavers which otherwise were morphologically unidentifiable. The present study fills a gap in taxonomy of flies and provides data facilitating application of new species as forensic indicators.Application of available keys to European Fanniidae did not facilitate unequivocal species identification for third instar larvae and females of Fannia Robineau-Desvoidy, 1830 collected during a study of arthropod succession on pig carrion. To link these samples to known species, we took the advantage of molecular identification methods and compared newly obtained cytochrome oxidase subunit I (COI) barcode sequences against sequences deposited in reference databases. As an outcome of the results obtained, we describe for the first time a third instar larva of Fannia nigra Malloch, 1910 and Fannia pallitibia (Rondani, 1866) and a female of Fannia collini d’Assis-Fonseca, 1966. We provide combinations of characters allowing for discrimination of described insects from other Fanniidae. We provide an update for the key by Rozkošný et al. 1997, which allows differentiation between females of F. collini and other species of Fanniidae. Additionally, we provide a case of a human cadaver discovered in Southern Poland and insect fauna associated with it as the first report of F. nigra larvae developing on a human body.

Highlights

  • Introduction conditions of the Creative CommonsFanniidae is one of the dipteran families that are attracted to and develop in decomposing animal carrion and human bodies [1,2,3,4,5]

  • Further complicating the identification of female fanniids are two issues; firstly, that some species are described only from males, and secondly females of closely related fanniids are frequently discriminated based only on a few vague characters, such as minor differences in body coloration or the number or size of fine setae. This is of particular detriment to the forensic utility of fanniids as the majority of adult specimens collected from carrion succession experiments or crime scene are females [1,2,4], and in some cases the adult females are impossible to identify based on morphology alone

  • During a study on insect succession on pig carrion, we found two distinct types of third instar larvae, hereafter Fannia sp. 1 and Fannia sp. 2, and females, hereafter

Read more

Summary

Introduction

Introduction conditions of the Creative CommonsFanniidae is one of the dipteran families that are attracted to and develop in decomposing animal carrion and human bodies [1,2,3,4,5]. Further complicating the identification of female fanniids are two issues; firstly, that some species are described only from males, and secondly females of closely related fanniids (when described) are frequently discriminated based only on a few vague characters, such as minor differences in body coloration or the number or size of fine setae This is of particular detriment to the forensic utility of fanniids as the majority of adult specimens collected from carrion succession experiments or crime scene are females [1,2,4], and in some cases the adult females are impossible to identify based on morphology alone

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call