Abstract

Several thrips species (Insecta, Thysanoptera) are globally known as important crop pests and vectors of viral diseases, but their identification is difficult because of their small body size and inconspicuous morphological differences. Sequencing variation in the mitochondrial cytochrome c oxidase I (COI) region has been proven to be useful for the identification of species of many groups of insect pests. Here, DNA barcoding has been used to identify thrips species collected with the use of sticky traps placed in an open onion field. A total of 238 thrips specimens were analyzed, 151 of which could be identified to species and 27 to genera belonging to the family Thripidae. Fifty-one specimens could not be assigned to any genus, with the closest BLAST match in the GenBank queries being below 98%, whilst six specimens were not recognized as Thysanoptera. The results indicate that, although there are a few pest thrips species not yet barcoded, most of the species that may cause damage to crops in Europe are represented in GenBank and other databases, enabling correct identification. Additionally, DNA barcoding can be considered a valuable alternative to the classic morphology method for identification of major thrips species.

Highlights

  • The identification of thrips species (Insecta, Thysanoptera) is not an easy task

  • Many studies have shown that sequence variation in the c oxidase I (COI) gene within thrips species is generally less than 2% [26,32,42,43]

  • The successful identification of a large proportion of thrips caught on field exposed sticky traps reported here supports the view that COI-based DNA barcoding is a valuable new tool for accurate identification of the agronomically important thrips species

Read more

Summary

Introduction

The identification of thrips species (Insecta, Thysanoptera) is not an easy task. The phenotypic and genetic variability in the characters employed for species identification may lead to ambiguous results. Specialized morphological keys are required for particular life stages. Morphology-based identification of thrips species demands a high level of expertise. The identification of thrips is mainly based on their biology (e.g., developmental stages and host range) and morphology (e.g., number and patterns of hairs on the wings, head and other parts of the exoskeleton, pattern in the exoskeleton cuticle; segmentation of antenna, ovipositor shape) [1,2].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.