Abstract

AbstractDNA barcoding has been largely successful in differentiating animal species, but the most effective loci and evaluative methods for plants are still debated. Floras of young, oceanic islands are a challenging test of DNA barcodes, because of rapid speciation, high incidence of hybridization and polyploidy. We used character-based, tree-based and genetic distance-based methods to test DNA barcoding of 385 species of native Hawaiian plants constituting 20 lineages at the nuclear ITS(2) locus, nine lineages at each of the plastid loci trnH-psbA and rbcL, eight lineages at the plastid locus matK and four lineages with concatenated data. We also incorporated geographical range information and tested if varying sample sizes within a lineage influenced identification success. Average discrimination success was low (22% maximum) with all methods of analysis across all loci. The character-based method generally provided the highest identification success, there were limited benefits from incorporating geographical data and no relationship between number of species sampled in a lineage and identification success was found. Percentages of identification success are the lowest reported in a DNA barcoding study of comparable scale, and multi-species groups that radiated in the Hawaiian archipelago probably cannot be identified based on current DNA barcoding loci and methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.