Abstract

Toremifene, an analogue of tamoxifen in which the ethyl side chain has been replaced with a 2-chloroethyl substituent, is used as a chemotherapeutic agent in postmenopausal women with advanced breast cancer. Toremifene is metabolized in a manner similar to that of tamoxifen, with alpha-hydroxytoremifene being a predominant metabolite in incubations in vitro. DNA adducts have been detected previously in liver DNA upon the administration of toremifene to rats; however, the identity of these adducts is unknown. In the present study, we have characterized the DNA adducts produced by alpha-hydroxytoremifene and have compared the extent of hepatic DNA adduct formation in rats administered toremifene, alpha-hydroxytoremifene, or tamoxifen. alpha-Hydroxytoremifene was synthesized, further activated by sulfation, and then reacted with salmon testis DNA. After enzymatic hydrolysis to deoxynucleosides, HPLC analysis indicated the formation of two major DNA adducts, which were characterized as (E)- and (Z)-alpha-(deoxyguanosin-N2-yl)toremifene on the basis of 1H NMR and mass spectral analyses. To assess the formation of toremifene DNA adducts in vivo, female Sprague-Dawley rats were treated intraperitoneally with toremifene, alpha-hydroxytoremifene, or tamoxifen. 32P-Postlabeling analyses of hepatic DNA from the tamoxifen-treated rats indicated three DNA adducts at a total level of 2,200 +/- 270 adducts/108 nucleotides. DNA adducts were not detected (<5 adducts/108 nucleotides) in the livers of rats treated with toremifene. Two DNA adducts, of which the major one coeluted with the 3',5'-bis-phosphate of (E)-alpha-(deoxyguanosin-N2-yl)toremifene, were present at a level of 57 +/- 12 adducts/108 nucleotides in hepatic DNA from rats administered alpha-hydroxytoremifene. The low level of hepatic DNA adduct formation observed with both toremifene and alpha-hydroxytoremifene, as compared to that with tamoxifen, may be due to the limited esterification of alpha-hydroxytoremifene and/or the poor reactivity of alpha-sulfoxytoremifene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call