Abstract

Pentachlorophenol (PCP) is a widely used biocide that has been reported to be hepatocarcinogenic in mice. Its effects in rats are equivocal, but the liver clearly is not a target organ for carcinogenesis. The carcinogenic effects of PCP in mice may relate to reactive oxygen species generated during metabolism. PCP is known to increase the hydroxyl radical-derived DNA lesion, 8-oxodeoxyguanosine (ohdG), in the liver of exposed mice. To investigate whether the generation of oxidative DNA damage and direct DNA adducts may explain the species difference in carcinogenicity, we have analyzed ohdG in hepatic DNA from PCP-exposed rats. Rats were exposed acutely to PCP for 1 or 5 days. Tissues also were obtained from a 27 week interim sacrifice of the 2 year National Toxicology Program carcinogenesis bioassay. We used HPLC with electrochemical array detection for ohdG analysis. Single or 5 day exposure to PCP (up to 120 or 60 mg/kg/day, respectively) did not increase ohdG. Dietary exposure to 1000 p.p.m. PCP (equivalent to 60 mg/kg/day) for 27 weeks induced a 2-fold increase in ohdG (1.8 versus 0.91x10(-6) in controls). In parallel, formation of direct DNA adducts was analyzed by 32P-post-labeling following nuclease P1 adduct enrichment. We detected two major DNA adducts with relative adduct labeling of 0.78x10(7) adducts per total nucleotides. One of these adducts was found to co-migrate with the adduct induced by the metabolite, tetrachloro-1,4-benzoquinone. We observed differences in DNA adduct formation between acute and chronic studies, with acute studies not inducing any detectable amount of DNA adducts. These results indicated that chronic, but not acute exposure to PCP increased ohdG and direct adducts in hepatic DNA. As the same exposure conditions that enhanced ohdG did not produce liver cancer in rats, the generation of reactive oxygen species, oxidative DNA damage and direct DNA adducts is not sufficient for the induction of hepatocarcinogenesis by PCP in the rat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.