Abstract
Abstract. Skin disease image segmentation is a crucial component of computer-aided diagnosis, providing precise localization and delineation of lesions that enhance diagnostic accuracy and efficiency. Despite significant advancements in convolutional neural networks (CNNs), there remains substantial room for improvement in segmentation performance due to the diverse and complex nature of skin lesions. In this study, we propose DMDLK-Net, a dynamic multi-scale feature fusion network with deformable large kernels, specifically designed to address the challenges in skin disease segmentation. Our network incorporates a Dynamic Deformable Large Kernel (DDLK) module and a Dynamic Multi-Scale Feature Fusion (DMFF) module, enhancing the model's ability to capture intricate lesion features. We present the performance of DMDLK-Net on the ISIC-2018 dataset, highlighting its promising results. Key contributions of this work include the innovative use of deformable large kernels for adaptive feature extraction and the introduction of dynamic multi-scale fusion to balance local and global information. Our experimental results confirm the effectiveness of DMDLK-Net in delivering high-precision segmentation, thus providing a reliable tool for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.