Abstract

Lung image registration plays an important role in lung analysis applications, such as respiratory motion modeling. Unsupervised learning-based image registration methods that can compute the deformation without the requirement of supervision attract much attention. However, it is noteworthy that they have two drawbacks: they do not handle the problem of limited data and do not guarantee diffeomorphic (topology-preserving) properties, especially when large deformation exists in lung scans. In this paper, we present an unsupervised few-shot learning-based diffeomorphic lung image registration, namely Dlung. We employ fine-tuning techniques to solve the problem of limited data and apply the scaling and squaring method to accomplish the diffeomorphic registration. Furthermore, atlas-based registration on spatio-temporal (4D) images is performed and thoroughly compared with baseline methods. Dlung achieves the highest accuracy with diffeomorphic properties. It constructs accurate and fast respiratory motion models with limited data. This research extends our knowledge of respiratory motion modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.