Abstract
Accurate and early detection of pneumoconiosis using chest X-rays (CXR) is important for preventing the progression of this incurable disease. It is also a challenging task due to large variations in appearance, size and location of lesions in the lung regions as well as inter-class similarity and intra-class variance. Compared to traditional methods, Convolutional Neural Networks-based methods have shown improved results; however, these methods are still not applicable in clinical practice due to limited performance. In some cases, limited computing resources make it impractical to develop a model using whole CXR images. To address this problem, the lung fields are divided into six zones, each zone is classified separately and the zone classification results are then aggregated into an image classification score, based on state-of-the-art. In this study, we propose a dual lesion attention network (DLA-Net) for the classification of pneumoconiosis that can extract features from affected regions in a lung. This network consists of two main components: feature extraction and feature refinement. Feature extraction uses the pre-trained Xception model as the backbone to extract semantic information. To emphasise the lesion regions and improve the feature representation capability, the feature refinement component uses a DLA module that consists of two sub modules: channel attention (CA) and spatial attention (SA). The CA module focuses on the most important channels in the feature maps extracted by the backbone model, and the SA module highlights the spatial details of the affected regions. Thus, both attention modules combine to extract discriminative and rich contextual features to improve classification performance on pneumoconiosis. Experimental results show that the proposed DLA-Net outperforms state-of-the-art methods for pneumoconiosis classification.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.