Abstract

In recent years, data-driven methods have been developed to learn dynamical systems and partial differential equations (PDE). The goal of such work is discovering unknown physics and the corresponding equations. However, prior to achieving this goal, major challenges remain to be resolved, including learning PDE under noisy data and limited discrete data. To overcome these challenges, in this work, a deep-learning based data-driven method, called DL-PDE, is developed to discover the governing PDEs of underlying physical processes. The DL-PDE method combines deep learning via neural networks and data-driven discovery of PDE via sparse regressions. In the DL-PDE, a neural network is first trained, and then a large amount of meta-data is generated, and the required derivatives are calculated by automatic differentiation. Finally, the form of PDE is discovered by sparse regression. The proposed method is tested with physical processes, governed by groundwater flow equation, convection-diffusion equation, Burgers equation and Korteweg-de Vries (KdV) equation, for proof-of-concept and applications in real-world engineering settings. The proposed method achieves satisfactory results when data are noisy and limited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call