Abstract

The Daniel K. Inouye Solar Telescope (DKIST) Data Handling System (DHS) provides the technical framework and building blocks for developing on-summit instrument quality assurance and data reduction pipelines. The DKIST Visible Broadband Imager (VBI) is a first light instrument that alone will create two data streams with a bandwidth of 960 MB/s each. The high data rate and data volume of the VBI require near-real time processing capability for quality assurance and data reduction, and will be performed on-summit using Graphics Processing Unit (GPU) technology. The VBI data processing pipeline (DPP) is the first designed and developed using the DKIST DHS components, and therefore provides insight into the strengths and weaknesses of the framework. In this paper we lay out the design of the VBI DPP, examine how the underlying DKIST DHS components are utilized, and discuss how integration of the DHS framework with GPUs was accomplished. We present our results of the VBI DPP alpha release implementation of the calibration, frame selection reduction, and quality assurance display processing nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.