Abstract

In order to explore the variation in soil microbial community diversity in paddy fields with different irrigation periods, we collected in situ rice field soils during different biogas irrigation periods and analyzed the microbial community structures of these soils by high-throughput sequencing. The results showed that as the biogas irrigation period increased, the soil pH decreased gradually, while organic matter, nitrate nitrogen, phosphate, and other nutrients were accumulated. Years of continued biogas irrigation was not conducive to improving rice yields. The results showed that as the biogas irrigation period increased, the richness in microbial species in paddy soils decreased gradually, and the diversity in the microbial communities was also reduced. Proteobacteria accounts for the largest proportion in rice paddy soil with biogas slurry irrigation. With the increase of biogas irrigation years, the proportion of β-Proteobacteria, Bacteroidia, Bacteroidales, Burkholderiales, Bacteroides, and Thiobacillus increased, while the proportion of Gemmatimonadetes and α-Proteobacteria decreased gradually. Dissolved organic carbon (F=2.67, P=0.09) had the greatest effect on microbial community structures in the studied paddy soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.