Abstract
Abstract 4084Poster Board III-1019Donor lymphocyte infusion (DLI) can be an effective cellular immunotherapy for patients with hematological malignancies after HLA-matched allogeneic stem cell transplantation (alloSCT). The effect of DLI is mediated by donor derived T-cells recognizing minor histocompatibility antigens (mHags) encoded by single nucleotide polymorphisms (SNPs) on malignant cells of the recipient. Donor T-cells may also induce Graft-versus-Host Disease (GvHD) when directed against mHags with broad expression on non-malignant tissues. The aim of this study was to investigate the specificity and diversity of mHags recognized by T-cells in Graft-versus-Leukemia (GvL) reactivity.Activated (HLA-DR+) CD8+ and CD4+ T-cell clones were isolated from a patient successfully treated with DLI for relapsed chronic myeloid leukemia (CML) more than one year after HLA-matched alloSCT. GvL reactivity in this patient was accompanied with mild GvHD of the skin. Isolated T-cell clones were shown to recognize 13 different mHags. CD8+ T-cell clones were specific for HA-1 and HA-2 in HLA-A*0201, one unknown mHag in B*0801 and 4 unknown mHags in B*4001. CD4+ T-cell clones were specific for one unknown mHag in HLA-DQ and 5 unknown mHags in DR. By screening plasmid (class I) and bacteria (class II) cDNA libraries, we identified a mHag in HLA-DQ encoded by the PI4K2B gene (Griffioen et al., PNAS 2008), 4 mHags in HLA-DR encoded by the PTK2B, MR-1, LY75 and MTHFD1 genes (Stumpf et al., Blood 2009) and a mHag in B*4001 encoded by the TRIP10 gene. For the 3 T cell clones recognizing unknown mHags in B*4001, we performed Whole Genome Assocation scanning (WGAs). A panel of 60 EBV-LCL was retrovirally-transduced with B*4001 and tested for T-cell recognition. In parallel, genomic DNA was isolated and more than one million single nucleotide polymorphisms (SNPs) were determined by the Illumina beadchip array. Statistical analysis revealed significant association between T-cell recognition of EBV-LCL and the presence of coding SNPs in the SON DNA-binding protein and SWAP-70 genes. To get more insight into the role and potential use of the mHags in GvL reactivity and GvHD, all T-cell clones were analyzed in detail for reactivity against hematopoietic and non-hematopoietic cells. Hematopoietic cells included peripheral blood cells (monocytes, B-cells and T-cells), professional antigen presenting cells (APC) and leukemic cells (CML, ALL and AML). All CD8+ T-cell clones recognized (subsets of) peripheral blood cells as well as CML cells, except for the T-cell clone for TRIP10. Recognition of (subsets of) peripheral blood cells was also observed for all CD4+ T-cell clones, but CML cells were differentially recognized. CML cells were strongly recognized by the T-cell clones for MTHFD1 and the unknown mHag in HLA-DR, whereas no or low reactivity was observed for all other CD4+ T-cell clones. All CD8+ and CD4+ T-cell clones strongly recognized professional APC, including monocyte-derived dendritic cells and in vitro differentiated CML cells with APC phenotype. All T-cell clones were also capable of recognizing AML and ALL, except for the T-cell clone for TRIP10, which showed restricted recognition of AML-M4 and -M5 of monocytic origin. As non-hematopoietic cells, patient-derived fibroblasts were cultured with and without IFN-γ and tested for T-cell recognition. In the absence of IFN-γ, all T-cell clones failed to recognize fibroblasts, except for the T-cell clone for the unknown mHag in B*0801. After treatment with IFN-γ, additional reactivity was observed for the T-cell clones for SON DNA-binding protein and the unknown mHag in B*4001.Our data showed the specificity and diversity of mHags recognized by T-cells induced in a patient successfully treated with DLI for relapsed CML. The T-cell response was directed against 13 different mHags, of which 10 mHags in HLA class I and class II have now been identified by different techniques. Detailed analysis of T-cell recognition of hematopoietic and non-hematopoietic cells provides evidence that the mHags played different roles in the onset and execution of GvL and GvHD. Moreover, only one of the 10 identified mHags was expressed on fibroblasts after treatment with IFN-γ, indicating the characterization of mHags with potential relevance for T-cell based immunotherapy. Disclosures:No relevant conflicts of interest to declare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.