Abstract

Microorganisms in the gastrointestinal tract of animals play vital roles in food digestion, homeostasis and immune response regulation. Globally, there are 33,700 fish species, representing almost half of all vertebrate diversity and a wide range of physiologies, ecologies and life histories. To investigate gut microbiomes with high coverage, we performed 16S rRNA gene amplicon sequencing with 115 samples of 20 common marine fish species. The fish gut microbiome is a remarkably simple community with low microbial diversity (a maximum of 300 amplicon sequence variants only) and has up to 70% of unknown species in some fish species. The gut microbial community structure was significantly shaped by the combined influence of host‐associated factors, including the fish taxon (p < .001, R2 = 0.16, ω 2 = 0.04), feeding habit (p < .001, R2 = 0.06, ω 2 = 0.02) and trophic level (p < .01, R2 = 0.04, ω 2 = 0.01), although the influence was subtle with a small effect size. The core gut microbiomes of different feeding habits were also previously discovered in animal‐associated and corresponding habitat samples. Certain energy metabolism pathways were enriched in herbivore/omnivore and zooplanktivore/zoobenthivore fishes, whereas lipid metabolism and glycan metabolism were enriched in zoobenthivore/piscivore fishes. Moreover, substantial taxonomic variability was found between the gut microbiomes of fish and animals, indicated by their low degree of shared microbiota. The data and observations reported herein pave the way for further investigations on the co‐evolution of fish gut microbiomes and their hosts, the physiological functions of gut microorganisms and the development of probiotics for improving the nutrition and health of aquaculture fish species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call