Abstract

AbstractIn this paper, we present a finite‐signal‐to‐noise ratio (finite‐SNR) framework to establish tight bounds on the diversity‐multiplexing tradeoff of a multiple input multiple output (MIMO) system. We focus on a more realistic propagation environment where MIMO channel fading coefficients are correlated and where SNR values are finite. The impact of spatial correlation on the fundamental diversity‐multiplexing tradeoff is investigated. We present tight lower bounds on the outage probability of both spatially uncorrelated and correlated MIMO channels. Using these lower bounds, accurate finite‐SNR estimates of the diversity‐multiplexing tradeoff are derived. These estimates allow to gain insight on the impact of spatial correlation on the diversity‐multiplexing tradeoff at finite‐SNR. As expected, the diversity‐multiplexing tradeoff is severely degraded as the spatial correlation increases. For example, a MIMO system operating at a spectral efficiency of R bps/Hz and at an SNR of 5 dB in a moderately correlated channel, achieves a better diversity gain than a system operating at the same spectral efficiency and at an SNR of 10 dB in a highly correlated channel, when the multiplexing gain r is greater than 0.8. Another interesting point is that provided that the spatial correlation channel matrix is of full rank, the maximum diversity gain is not affected by the spatial correlation. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.