Abstract

We present a tight lower bound on the outage probability of a spatially correlated multielement antenna (MEA) channel. Using this lower bound, an accurate flnite-SNR estimate of the diversity-multiplexing tradeoff over a spatially correlated Rayleigh fading channel is derived. This estimate allows gaining insight on the impact of spatial correlation on the diversity-multiplexing tradeoff at finite SNR. As expected, the diversity multiplexing tradeoff is severely degraded as the spatial correlation increases. For example, a MIMO system operating at a transmission rate of R = rlog <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (1+ g ldr eta) bps/Hz, where r is the multiplexing gain, g is the array gain and eta is the SNR at each receive antenna, and an SNR of 5 dB in a moderately correlated channel, achieves a better diversity gain than a system operating at an SNR of 10 dB in a highly correlated channel, when r ges 0.8. Another interesting point is that the maximum diversity gain is unaffected by the correlation, provided that the spatial channel correlation matrix is of full rank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.