Abstract

The species richness, distribution and community structure in cold desert regions across the world are poorly understood because of their inaccessibility and remoteness. Similarly, the structure and composition of forest resources, including other management units (i.e., agroforestry and forestry systems), have hardly been studied in the cold desert of the Lahaul valley. However, such information is a prerequisite to understanding the trends and changes in the vegetation distribution under global climate change scenarios, especially considering the sensitivity of plant species in high-altitude areas of the Himalayan region. High anthropogenic activity has exerted tremendous pressure on available forest resources, including other management units in the cold desert of the Lahaul valley. Standard ecological methods were used to obtain an ecological (i.e., status, structure, composition and vegetation patterns) understanding of the region for biodiversity conservation and environmental sustainability. The present study was aimed at understanding the trend, structure and composition of plant species in the cold desert region of the western Himalaya. A total of 64 species (27 trees and 37 shrubs) of vascular plants were recorded in the present study. Tree diversity demonstrated greater variation along the gradients and slope aspects. Salix fragilis trees, with a 102 tree ha−1 density and a few trees of Populus nigra, were found to be sparsely distributed under the agroforestry system on the south-facing slopes in Khoksar. In Jahlma, Salix fragilis grew in an agroforestry system with a density of 365 tree ha−1. However, in Hinsa, Juniperus polycarpos was a dominant tree species in the agroforestry system, with a density of 378 tree ha−1. On the north-facing slopes in Kuthar, a higher number of trees and bushes were present due to natural regeneration maintained by farmers along the edges of terraced agricultural fields. The south-facing slopes showed a relatively lower species richness and diversity as compared to north-facing slopes at similar locations due to relatively less favourable growth conditions under sun-exposed, extremely xeric soil conditions. The highest level of species turnover was found between the altitudes of 2400 m and 3000 m. Betula utilis showed the highest adaptability at higher altitudes (>3500 m). The vegetation analysis results and information generated in the present study are useful for gaining an ecological understanding of the cold desert ecosystem in the Lahaul valley. Sustainable forest resource management, including other management units (e.g., agroforestry and forestry systems), is crucial for improving the vegetation pattern, structure and function of the cold desert ecosystem, thereby contributing to climate change mitigation, adaptation, biodiversity and ecosystem service conservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call