Abstract
Endophytic bacterial diversity in four rice cultivars grown in two soil-types, their plant-probiotic features and rhizospheric deployment under P-stress were investigated. Oryza sativa cvs. TCN1, TCS10, TK8, and TN71 were cultivated in greenhouse using non-sterile acidic and near-neutral paddy soils for 60 days. Root, stem and leaf tissues were screened for culturable bacterial endophytes using nutrient agar. Endophytes were identified and profiled for plant-probiotic features. The richness, Shannon-Weiner diversity, evenness and Venn’s distribution in terms of endophytic strains were evaluated. Seed-borne endophytes were characterized through DGGE. The deployment of endophytes into the rhizosphere in TCN1 and TK8 under gnotobiotic P-stress was assessed. A total of 52 distinct endophytic bacterial strains affiliated to 5 classes and 20 discrete genera exhibiting differential plant-probiotic features were isolated from various tissues of four different rice cultivars. The diversity and distribution of endophytes fluctuated with soil-type, tissue-type and rice genotype. Gnotobiotic insoluble P treatment revealed significantly enhanced deployment of P-solubilizing rhizobacteria in TCN1 as compared to soluble P and P-lacking control. Rice endophytic bacteria are diverse, and their distribution within the plant and deployment as rhizobacteria were found to be influenced by host genotype, edaphic factors and nutrient stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.