Abstract

The entorhinal cortex (ERC) is critically implicated in temporal lobe epileptogenesis--the most common type of adult epilepsy. Previous studies have suggested that epileptiform discharges likely initiate in seizure-sensitive deep layers (V-VI) of the medial entorhinal area (MEA) and propagate into seizure-resistant superficial layers (II-III) and hippocampus, establishing a lamina-specific distinction between activities of deep- versus superficial-layer neurons and their seizure susceptibilities. While layer II stellate cells in MEA have been shown to be hyperexcitable and hypersynchronous in patients and animal models of temporal lobe epilepsy (TLE), the fate of neurons in the deep layers under epileptic conditions and their overall contribution to epileptogenicity of this region have remained unclear. We used whole cell recordings from slices of the ERC in normal and pilocarpine-treated epileptic rats to characterize the electrophysiological properties of neurons in this region and directly assess changes in their excitatory and inhibitory synaptic drive under epileptic conditions. We found a surprising heterogeneity with at least three major types and two subtypes of functionally distinct excitatory neurons. However, contrary to expectation, none of the major neuron types characterized showed any significant changes in their excitability, barring loss of excitatory and inhibitory inputs in a subtype of neurons whose dendrite extended into layer III, where neurons are preferentially lost during TLE. We confirmed hyperexcitability of layer II neurons in the same slices, suggesting minimal influence of deep-layer input on superficial-layer neuron excitability under epileptic conditions. These data show that deep layers of ERC contain a more diverse population of excitatory neurons than previously envisaged that appear to belie their seizure-sensitive reputation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.