Abstract

Phytophthora citrophthora and P. syringae are currently the primary causal organisms of brown rot of citrus fruits in California. To possibly find an explanation for the prevalence of the previously minor species P. syringae, we determined the population structures of both pathogens in California using next-generation sequencing and population genomics analyses. Whole-genome sequencing and aligning with newly assembled reference genomes identified 972,266 variants in 132 isolates of P. citrophthora and 422,208 variants in 154 isolates (including 24 from noncitrus tree crops) of P. syringae originating from three major growing regions. The resulting data sets were visualized using principal component analysis, discriminant analysis of principal components, unweighted pair-group method with arithmetic mean dendrograms, fastStructure, and minimum spanning networks, and we obtained the index of association, diversity summary statistics, and genetic distance statistics values GST, G''ST, and Jost's D. Subpopulations of both species were mostly defined by their geographic origin indicating restricted dispersal of inoculum. Except for five isolates, the population structure of P. citrophthora (that is heterothallic and unlikely to reproduce sexually) was clonal to semi-clonal, with very little genetic diversity within and among subgroups. In contrast, the population structure of P. syringae was also clonal to semi-clonal, but isolates were placed into four main clusters of much higher diversity. Clonality in both species can be explained by a high level of asexual reproduction. The higher diversity in the homothallic P. syringae is likely due to commonly occurring sexual reproduction. One distinct cluster of P. syringae consisted solely of isolates from noncitrus hosts; therefore, the origin of P. syringae in citrus could not be resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.