Abstract

Recycling sewage sludge (SS) as a soil amendment potentially causes soil heavy metals (HMs) contamination. This study investigated the potential roles of landscape plants co-planting in SS-amended soil remediation. Three landscape trees Mangifera persiciforma, Bischofia javanica, and Neolamarckia cadamba (NC), and three ground cover plants Dianella ensifolia, Syngonium podophyllum, and Schefflera odorata (SO) were selected for the tree-ground cover co-planting. Species in different co-planting treatments exhibited diversified effects on the growth, root morphology, HMs uptake, and HMs accumulation. Five plant characteristics including total root length, total surface of roots (diameter <2 mm), specific root length, shoot dry weight and root dry weight played crucial roles in plant HMs uptake. Structural equation modeling analysis revealed that different co-planting treatments drive species to develop an active, passive, or avoidance strategy to accumulate HMs, resulting in a diversity of HMs removal efficiency. Co-planting of NC with SO promoted NC and SO HMs accumulation and resulted in the greatest HMs contents decline (48.0% for Cd, 24.9% for Cu, 33.8% for Zn, and 27.2% for Ni) and the lowest potential ecological risk. Co-planting of landscape tree and ground cover plants with an active strategy can be a potential candidate for HMs phytoremediation of SS-amended soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.