Abstract
All extant birds share the same sex-chromosome system: ZZ males and ZW females with striking differences in the stages of sex-chromosome differentiation between the primitive palaeognathus ratites and the large majority of avian species grouped within neognaths. Evolutionarily close to ratites is the neotropical order Tinamiformes that has been scarcely explored regarding their ZW pair morphology and constitution. Tinamous, when compared to ratites, constitute a large group among Palaeognathae, therefore, exploring the extent of homology between the Z and W chromosomes in this group might reveal key features on the evolution of the avian sex chromosomes. We mapped MLH1 foci that are crossover markers on pachytene bivalents to determine the size and localization of the homologous region shared by the Z and W chromosomes in two tinamous: Eudromia elegans and Crypturellus tataupa. We found that the homologous (pseudoautosomal) region differ significantly in size between these two species. They both have a single recombination event on the long arm of the acrocentric Z and W chromosomes. However, in E. elegans the pseudoautosomal region occupies one-fourth of the W chromosome, while in C. tataupa it is restricted to the tip of the long arm of the W. The W chromosomes in these two species differ in their heterochromatin content: in E. elegans it shows a terminal euchromatic segment and in C. tataupa is completely heterochromatic. These results show that tinamous have ZW pairs with more diversified stages of differentiation compared to ratites. Finally, the idea that the avian proto-sex chromosomes started to diverge from the end of the long arm towards the centromere of an acrocentric pair is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have