Abstract

Abnormal metabolism of metal ions such as zinc may contribute to neuropathology. Complexing zinc could reduce this pathology. Thus, to examine the effectiveness of metal chelating agents in vivo, a model system was used. This involved determining the ability of chelating agents to prevent neuronal death caused by zinc chloride injected into the rat hippocampus. Significant protection against zinc toxicity was obtained with pyrithione, inositol hexakisphosphate, ethylenediamine tetraacetate (EDTA) and N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). The affinity of these agents for zinc varied between 10 6 M −1 and 10 18 M −1. Thus, the affinity for zinc within this range does not appear to be a major factor affecting the ability of chelators to provide neuroprotection. While almost complete protection was found with EDTA and TPEN given simultaneously with zinc chloride, poor protection was obtained if TPEN was given before or after zinc chloride. Other agents either did not protect against zinc-induced neuronal death (zincon), or exacerbated zinc toxicity (BTC-5N and about 40% of rats injected with a combination of zinc chloride and diethylenetriamine pentaacetate [DTPA]). Rats showing increased damage after zinc plus BTC-5N or DTPA suffered wet dog-like shakes (WDS), suggesting that these zinc chelate complexes can induce seizures resulting in seizure-related damage. In contrast, in the 60% of rats treated with zinc chloride and DTPA that had no WDS, there was about an 80% reduction in the size of the zinc-induced lesion. The ability of chelators to cross cell membranes was examined by determining whether Timm's staining for vesicular zinc was reduced following the injection of a chelator into the hippocampus. TPEN and pyrithione reduced Timm's staining for zinc. However, cell permeability was not necessary for a chelator to protect against zinc toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.