Abstract

The purpose of this study was to determine whether the plant type 1 peroxisomal targeting signal (PTS1) utilizes amino acid residues that do not strictly adhere to the serine-lysine-leucine (SKL) motif (small-basic-hydrophobic residues). Selected residues were appended to the C terminus of chloramphenicol acetyltransferase (CAT) and were tested for their ability to target CAT fusion proteins to glyoxysomes in tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 suspension-cultured cells. CAT was redirected from the cytosol into glyoxysomes by a wide range of residues, i.e. A/C/G/S/T-H/K/ L/N/R-I/L/M/Y. Although L and N at the -2 position (-SLL, -ANL) do not conform to the SKL motif, both functioned, but in a temporally less-efficient manner. Other SKL divergent residues, however, did not target CAT to glyoxysomes, i.e. F or P at the -3 position (-FKL, -PKL), S or T at the -2 position (-SSI, STL), or D at the -1 position (-SKD). The targeting inefficiency of CAT-ANL could be ameliorated when K was included at the -4 position (-KANL). In summary, the plant PTS1 mostly conforms to the SKL motif. For those PTS1s that possess nonconforming residue(s), other residues upstream of the PTS1 appear to function as accessory sequences that enhance the temporal efficiency of peroxisomal targeting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.