Abstract
Terrestrial water storage anomaly (TWSA) from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on was first exacted by using the forward modeling (FM) method at three different scales over the Yangtze River basin (YRB): whole basin, three middle sub-basins, and eleven small sub-basins (total 15 basins). The spatiotemporal variability of eight hydroclimatic variables, snow water storage change (SnWS), canopy water storage change (CnWS), surface water storage anomaly (SWSA), soil moisture storage anomaly (SMSA), groundwater storage anomaly (GWSA), precipitation (P), evapotranspiration (ET), and runoff (R), and their contribution to TWSA were comprehensively investigated over the YRB. The results showed that the root mean square error of TWS change after FM improved by 17 %, as validated by in situ P, ET, and R data. The seasonal, inter-annual, and trend revealed that TWSA over the YRB increased during 2003–2018. The seasonal TWSA signal increased from the lower to the upper of YRB, but the trend, sub-seasonal, and inter-annual signals receded from the lower to the upper of YRB. The contribution of CnWS to TWSA was small over the YRB. The contribution of SnWS to TWSA occurs mainly in the upper of YRB. The main contributors to TWSA were SMSA (~36 %), SWSA (~33 %), and GWSA (~30 %). GWSA can be affected by TWSA, but other hydrological elements may have a slight impact on groundwater in the YRB. The primary driver of TWSA over the YRB was P (~46 %), followed by ET and R (both ~27 %). The contribution of SMSA, SWSA, and P to TWSA increased from the upper to the lower of YRB. R was the key driver of TWSA in the lower of YRB. The proposed approaches and results of this study can provide valuable new insights for water resource management in the YRB and can be applied globally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.