Abstract

Herein, reactivity studies of a cyclic bis-hydridostannylene [(ADC)SnH]2 (1-H2) (ADC=PhC{(NDipp)C}2; Dipp=2,6-iPr2C6H3) with various unsaturated organic substrates are reported. Reactions of terminal alkynes (RC≡CH) with 1-H2 afford mixed acetylide-vinyl-functionalized bis-stannylenes via dehydrogenation and hydrostannylation. Treatment of 1-H2 with PhC≡CCH3 gives a unique distannabarrelene via dehydrogenative C(sp3)-H stannylation and hydrostannylation of the C≡CCH3 moiety. 1-H2 undergoes dehydrogenative [2+2]-cycloaddition reactions with diphenylacetylene, azobenzene, acetone, benzophenone, and benzaldehyde to form the 1,4-distannabarrelene derivatives. The elimination of H2 in these reactions suggests the masked-diradical property of 1-H2. In fact, these [2+2]-cycloaddition products are also accessible on treatments of the Sn(I) diradicaloid [(ADC)Sn]2 (1) with appropriate reagents. All compounds have been characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction. Moreover, the catalytic activity of 1-H2 has been shown for the hydroboration of unsaturated substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call