Abstract

Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell types, including C(2)C(12) and DMPK(-/-) myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes. Mouse DMPK A and C were found to associate specifically with either the endoplasmic reticulum (ER) or the mitochondrial outer membrane, whereas the corresponding human DMPK A and C proteins both localized to mitochondria. Expression of mouse and human DMPK A-but not C-isoforms in mammalian cells caused clustering of ER or mitochondria. Membrane association of DMPK isoforms was resistant to alkaline conditions, and mutagenesis analysis showed that proper anchoring was differentially dependent on basic residues flanking putative transmembrane domains, demonstrating that DMPK tails form unique tail anchors. This work identifies DMPK as the first kinase in the class of tail-anchored proteins, with a possible role in organelle distribution and dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.