Abstract
It has been advocated that nitrogen (N) availability plays an essential role in mediating plant and microbial growth in cold environment, and could thus regulate the direction and magnitude of permafrost carbon (C)-climate feedback. However, compared to widely concerned N, little is known about soil phosphorous (P) availability and its biological acquisition strategies in permafrost environment. Here we explored soil microbial P acquisition strategies using shotgun metagenomics across the Tibetan permafrost area, encompassing a large scale survey spanning 1,000 km. In contrast to the traditional opinion that microorganisms in cold area usually obtain P mainly through mineralization process, our results revealed that the P cycling genes responsible for solubilization, mineralization and transportation were widespread, illustrating multiple microbial strategies for acquiring P in permafrost regions. Moreover, the higher gene abundance related to solubilization and mineralization as well as an increased ration of MAGs carrying these genes were detected in the active layer, while the greater abundance of low affinity transporter gene (pit) and proportions of MAGs harbouring pit gene were observed in permafrost deposits, reflecting a stronger potential for P activation in active layer but an enhanced P transportation potential in permafrost deposits. Taken together, these results highlight that besides microbial P mineralization, multiple P-related acquisition strategies and their differences among various soil layers should be considered simultaneously to improve model prediction for the responses of biogeochemical cycles in permafrost ecosystems to climate change.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have