Abstract

Homophilic binding of E-cadherins through their ectodomains is fundamental to epithelial cell-cell adhesion. Despite this, E-cadherin ectodomains have evolved differently in the vertebrate and insect lineages. Of the five rod-like, tandemly aligned extracellular cadherin domains of vertebrate E-cadherin, the tip extracellular cadherin domain plays a pivotal role in binding interactions. Comparatively, the six consecutive N-terminal extracellular cadherin domains of Drosophila E-cadherin, DE-cadherin (also known as Shotgun), can mediate adhesion; however, the underlying mechanism is unknown. Here, we report atomic force microscopy imaging of DE-cadherin extracellular cadherin domains. We identified a tightly folded globular structure formed by the four N-terminal-most extracellular cadherin domains stabilized by the subsequent two extracellular cadherin domains. Analysis of hybrid cadherins from different insects indicated that the E-cadherin globular portion is associated with determining homophilic binding specificity. The second to fourth extracellular cadherin domains were identified as the minimal portion capable of mediating exclusive homophilic binding specificity. Our findings suggest that the N-terminal-most four extracellular cadherin domains of insect E-cadherin are functionally comparable with the N-terminal-most single extracellular cadherin domain of vertebrate E-cadherin, but that their mechanisms might significantly differ. This work illuminates the divergence of structural strategies for E-cadherin homophilic binding among bilaterians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.