Abstract
Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with pi-systems of nucleic acid bases. These cation-pi interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing pi-systems to positive charge. A series of critical cation-pi interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4-P6 domain. The structural consequences of divalent cation-pi interactions are clearly distinct from, and some cases in opposition to, cation-electron lone pair interactions. These observations of cation-pi interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA-protein recognition, base-flipping, RNA folding, and catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.