Abstract

Granular activated carbons were obtained from grape seeds by pyrolysis at 600°C and subsequent physical activation with CO2 (750–900°C, 1–3 h, 25–74% burn-off). The carbon and ash content increased during the activation, reaching values of 79.0% and 11.4%, respectively. Essentially microporous materials with BET surface areas between 380 and 714 m2/g were obtained. The performance of the activated carbon in the adsorption of diuron in aqueous phase was studied within the 15–45°C temperature range. Equilibrium data showed that the maximum uptake increased with temperature from 120 to 470 µmol/g, also evidencing some dependence of the adsorption mechanism on temperature. Data were fitted to five isotherm models [Langmuir, Freundlich, Dubinin–Radushkevich, BET, and GAB (Guggenheim, Anderson, and de Boer)]. Kinetic data were analyzed using first- and second-order rate equations and intraparticle diffusion model. The second-order rate constant values obtained (2.8–13.5 × 10−3 g/µmol min) showed that the hollow core morphology of the material favors the adsorption kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.