Abstract

AbstractDiurnal variations in clouds and radiation budgets over four subareas of the Tibetan Plateau (TP) during summer (June–August) are analyzed using the Clouds and the Earth's Radiant Energy System (CERES) synoptic 1° (SYN1deg) data from 2000 to 2020. The results show that the total cloud amount decreases from southeast to northwest and is larger during daytime (71.1%) than nighttime (67.2%) over the entire TP. High‐clouds develop in the afternoon, persist during nighttime, and dissipate after sunrise. Low clouds develop after sunrise and dissipate in the afternoon over the entire TP, but show opposite temporal variation over the Kunlun Mountains. The net radiation budget at the top‐of‐atmosphere reaches its maximum at noon. The surface net radiation budget is positive in the daytime and negative at nighttime. These features are mainly adjusted by the cloud distribution. The diurnal variations in heating rate over the four subareas are similar in the upper atmosphere but different in the lower layer. The low‐atmosphere heating rate shows a maximum value over the center‐south (CS) subarea, while it is lowest over the west (W) subarea. Internal cloud forcing has distinct regional differences over the four subareas: it shows a heating effect in the low atmosphere and a cooling effect in the middle atmosphere over the CS subarea, whereas over the W subarea it shows a radiative cooling effect in the low atmosphere and no significant radiative effect in the middle layer. The findings of this study help toward improving our understanding of the TP's energy cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call