Abstract

AbstractWe analyze the sources for spread in the response of the Northern Hemisphere wintertime stratospheric polar vortex (SPV) to global warming in Climate Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) model projections. About half of the intermodel spread in SPV projections by CMIP6 models, but less than a third in CMIP5 models, can be attributed to the intermodel spread in stationary planetary wave driving. In CMIP6, SPV weakening is mostly driven by increased upward wave flux from the troposphere, while SPV strengthening is associated with increased equatorward wave propagation away from the polar stratosphere. We test hypothesized factors contributing to changes in the upward and equatorward planetary wave fluxes and show that an across‐model regression using projected global warming rates, strengthening of the subtropical jet and basic state lower stratospheric wind biases as predictors can explain nearly the same fraction in the CMIP6 SPV spread as the planetary wave driving (r = 0.67). The dependence of the SPV spread on the model biases in the basic state winds offers a possible emergent constraint; however, a large uncertainty prevents a substantial reduction of the projected SPV spread. The lack of this dependence in CMIP5 further calls for better understanding of underlying causes. Our results improve understanding of projected SPV uncertainty; however, further narrowing of the uncertainty remains challenging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.