Abstract

Diurnal and seasonal variations of bottom side electron density profile shape parameters B0, B1, representing the bottom side F2-layer thickness and shape, are examined using modern digital ionosonde observations at a low-middle latitude station, New Delhi (28.6 °N, 77.2 °E, dip 42.4 °N) for high solar activity (HSA) (2001–2002). Median values of these parameters are obtained at each hour during different seasons and compared with the predictions of the latest version of the international reference ionosphere (IRI), IRI-2001 model using both the options namely: IRI (Gulyaeva) and IRI (B0 Tab.). Results show in general, a large variability in B0, and B1 parameters during all the seasons, the variability is larger during nighttime than by daytime. The diurnal variation of median B0, in general, show more or less similar trends with diurnal maximum occurring around noontime, except during summer, when it occurs between 09 and 10 LT. Variation pattern of B1 in general, is identical in all the seasons with lower values of B1 by daytime than by night. Comparative studies of B0 with those obtained with the IRI model show that in general, IRI (B0 Tab.) option reveals better agreement with the observations during all the seasons for local times from about 10 LT to about 16 LT, while outside this time period IRI (Gulyaeva) matches well with the observations. The predicted B1 parameter, using IRI (B0 Tab.) is close to observations in terms of diurnal variation, while B1 using IRI (Gulyaeva) option, assumes a fixed value of 3 at all local times irrespective of season.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.