Abstract

To address the global warming problem, one of the space-based geoengineering solutions suggests the construction of an occluding disc that can work as a solar curtain to mitigate solar irradiation penetration to the earth atmosphere. A widely discussed concept needs the construction of a large-scale sunshade system near the Sun–Earth L1 equilibrium point in order to control the average global temperature. However, to improve the accuracy of theoretical estimations, more consistent modeling of the Sun-Curtain-Earth system and solar irradiance reduction rate are required. This study revisits the mathematical modeling of the solar irradiance reduction system and considers the fundamentals of shading physics. Simplified mathematical modeling of solar irradiance reduction rate is derived based on the solar flux density. For the climate control, controllability of the reduction rate by using some physical parameters (e.g., flux reflection rate and angle of the curtain) is discussed. Based on the results of this model, the technical challenges and feasibility of constructing a sunshade system at L1 Lagrange point are evaluated. Some technologically feasible, near-future options for the warming problem are discussed briefly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.