Abstract

ABSTRACT New thioetheramide ligands (L, PhS(CH2)nCONRR’) co-extract Pd(II) and Pt(IV) from acidic chloride solutions. The Pd is transferred to a water-immiscible phase as a [Pd(L)2Cl2] complex with thioether groups in the inner sphere whilst Pt is extracted in an outer-sphere assembly, [(LH)2·PtCl6], containing protonated reagent molecules LH+ that charge-balance the chloridoplatinate dianion, [PtCl6]2-. The much higher kinetic and thermodynamic stability of the Pd(II) complex makes it possible to strip the Pt into a weakly acidic aqueous phase before recovering the Pd by back-extraction into aqueous ammonia to form [Pd(NH3)4]Cl2, thereby separating the two elements. An alkyl spacer group with two methylene units between the thioether (S) and amide (C) atoms is a stronger extractant for both metals than those with one or three methylene units. The extractants reject trianionic chloridometalates with higher hydration energies such as [IrCl6]3-. X-ray structures of two [Pd(L)2Cl2] complexes (L, PhSCH2CONH-n-C4H9 or PhS(CH2)2CONH-n-C4H9) have planar coordination with a transarrangement of the thioether groups and geometries very similar to those predicted by DFT calculations. These calculations show that addition of a proton to the proligands L generates a pseudochelate with the added H+ located between the S atom and the carbonyl O atom. In contrast to related ether- and amino-amide extractants, this pseudochelate ring is broken in the [(LH)2.PtCl6] assemblies formed by the thioetheramides and the OH+ and NH units make the close contacts to the PtCl6 2- ion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call