Abstract

Severe side reactions and dendrite growth are widespread in zinc anodes due to the aqueous electrolyte and the inhomogeneity of the Zn surface. Constructing an artificial interfacial layer on the zinc anode is a direct and effective strategy to solve these problems. Herein, a dithio-bridged chelate (DTBC) network consisting of zinc dimethyldithiocarbamate molecules was in situ constructed on the zinc surface via a facile interfacial dissolution-coordination strategy. The experiment and theoretical calculation revealed that the DTBC network simultaneously improves the thermos-kinetics properties of zinc anode. Moreover, the dithio groups in the DTBC network can induce the preferred plating of Zn along the (002) crystal plane and suppress dendrite growth. The DTBC-Zn electrode delivered an extended lifetime of over 1200 h with an ultralow polarization of ∼27.3 mV at 0.5 mA cm−2. The capacity retention rate of DTBC-Zn|MnO2 full cell was as high as 97.98 % after 1600 cycles, further confirming the feasibility of the robust dithio-bridged chelate network for stabilizing thermo-kinetics of zinc anode. This work contributes a simple and effective way to construct high-performance zinc anodes for aqueous zinc ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call