Abstract
Stable operation of a doubly resonant femtosecond optical parametric oscillator (OPO) requires submicron matching of the OPO and pump laser cavity lengths, which is normally implemented using a dither-locking feedback scheme. Here we show that parasitic sum-frequency mixing between the pump and resonant pulses of a degenerate femtosecond OPO provides an error signal suitable for actuating the cavity length with the precision needed to maintain oscillation on a single fringe and at maximum output power. Unlike commonly used dither-locking approaches, the method introduces no modulation noise and requires no additional optical components, except for one narrowband filter. The scheme is demonstrated on a Ti:sapphire-pumped sub-40-fs PPKTP OPO, from which data are presented showing a tenfold reduction in relative intensity noise compared with dither locking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have