Abstract

BackgroundAtopic dermatitis is a common chronic inflammatory skin disease characterized by relapsing eczema and intense itch. DGT is a novel synthetic heterocyclic diterpenoid derived from plants. Its therapeutic potential and mechanism(s) of action are poorly understood. ObjectivesWe investigated the potent therapeutic effect of DGT on atopic dermatitis, exploring the underlying mechanisms and determining whether DGT is a safe and well-tolerated topical treatment. MethodsWe observed anti-inflammatory effects of DGT on tumor necrosis factor-α/interferon-γ–treated human keratinocytes, and anti-allergic effects on immunoglobulin E–sensitized bone marrow–derived mast cells. In vivo, DGT was topically applied to two experimental mouse models of atopic dermatitis: oxazolone-induced sensitization and topically applied calcipotriol. Then the therapeutic effects of DGT were evaluated physiologically and morphologically. Moreover, we performed nonclinical toxicology and safety pharmacology research, including general toxicity, pharmacokinetics, and safety pharmacology on the cardiovascular, respiratory, and central nervous systems. ResultsIn keratinocytes, DGT reduced the expression of inflammatory factors, promoting the expression of barrier functional proteins and tight junctions and maintaining the steady state of barrier function. DGT also inhibited the activation and degranulation of mast cells induced by immunoglobulin E. Moreover, we found that interleukin-4 receptor-α was the possible target of DGT. Meanwhile, DGT had therapeutic effects on oxazolone/calcipotriol-treated mice. Notably, our pharmacology results demonstrated that DGT was safe and nontoxic in our studies. ConclusionDGT’s potent anti-inflammatory effects and good safety profile suggest that it is a potential candidate for the treatment of atopic dermatitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.