Abstract

The Disturbed Stress Field Model (DSFM) is a smeared delayed-rotating-crack model, proposed recently as an alternative to fully fixed or fully rotating crack models, for representing the behavior of cracked reinforced concrete. It is an extension of the modified compression field theory; advancements relate to the inclusion of crack shear slip in the element compatibility relations, the decoupling of principal stress and principal strain directions, and a revised look at compression softening and tension stiffening mechanisms. This paper describes a procedure for implementing the formulations of the DSFM into a nonlinear finite-element algorithm. The procedure is based on a total-load secant-stiffness approach, wherein the crack slip displacements are treated as offset strains. Computational aspects of the formulation are shown to be simple and numerically robust. The hybrid crack slip formulation used is found to accurately model the divergence of stress and strain directions, providing an improved representation of behavior. Predictions of shear strength and failure mode are significantly influenced in some cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.