Abstract
AbstractThe concurrent existence of model uncertainties, external disturbances, and actuator faults in a nonlinear system such as a robotic manipulator can significantly affect the trajectory tracking performance of these systems. Therefore this study is devoted to proposing a control approach based on fixed‐time control theory to improve the trajectory tracking performance of the robotic manipulator in the presence of lumped disturbance, including uncertainties, external disturbances, and actuator faults. The control approach in this paper is designed based on the integration of a fixed‐time adaptive sliding mode observer and a fixed‐time non‐singular fast terminal sliding mode control design strategy. Firstly, a new fixed‐time adaptive sliding mode observer is designed based on fixed‐time theory and adaptive control theory to estimate the lumped disturbance present in the system. Then, using the information from the disturbance observer, the fixed‐time non‐singular fast terminal sliding mode control is devised based on a non‐singular fixed‐time sliding surface and a fixed‐time reaching approach. Furthermore, in the sense of the Lyapunov theorem, through rigorous analysis, it is demonstrated that the tracking errors of the closed‐loop system converge to a small neighbourhood within a fixed time, regardless of the information about the initial conditions of the states of the system. Finally, extensive comparative simulations are performed using the PUMA560 robot to manifest the feasibility and validity of the proposed control strategy in terms of trajectory tracking accuracy and fast convergence in the presence of uncertainties, disturbances, and actuator faults.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have