Abstract

This paper presents a novel approach to modeling the gradual reduction in heat demand and the evolving expansion of district heating (DH) grids for assessing the DH potential in EU member states (MS). It introduces new methodological elements for modeling the impact of connection rates below 100% on heat distribution costs in both dense and sparse areas. The projected heat demand in 2050 is derived from a decarbonization scenario published by the EU, which would lead to a reduction in demand from 3128 TWh in 2020 to 1709 TWh by 2050. The proposed approach yields information on economic DH areas, DH potential, and average heat distribution costs. The results confirm the need to expand DH grids to maintain supply levels in view of decreasing heat demand. The proportion of DH potential from the total demand in the EU-27 rises from 15% in 2020 to 31% in 2050. The analysis of DH areas shows that 39% of the DH potential is in areas with heat distribution costs above 35 EUR/MWh, but most MS have average heat distribution costs between 28 and 32 EUR/MWh. The study reveals that over 40% of the EU's heat demand is in regions with high potential for implementing DH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.