Abstract

The last decade has seen an explosion in the application of genomic tools across all biological disciplines. This is also true for mycobacteria, where whole genome sequences are now available for pathogens and non-pathogens alike. Genomes within the Mycobacterium tuberculosis Complex (MTBC) bear the hallmarks of horizontal gene transfer (HGT). Conjugation is the form of HGT with the highest potential capacity and evolutionary influence. Donor and recipient strains of Mycobacterium smegmatis actively conjugate upon co-culturing in biofilms and on solid media. Whole genome sequencing of the transconjugant progeny demonstrated the incredible scale and range of genomic variation that conjugation generates. Transconjugant genomes are complex mosaics of the parental strains. Some transconjugant genomes are up to one-quarter donor-derived, distributed over 30 segments. Transferred segments range from ~50 bp to ~225,000 bp in length, and are exchanged with their recipient orthologs all around the genome. This unpredictable genome-wide infusion of DNA sequences is called Distributive Conjugal Transfer (DCT), to distinguish it from traditional oriT-based conjugation. The mosaicism generated in a single transfer event resembles that seen from meiotic recombination in sexually reproducing organisms, and contrasts with traditional models of HGT. This similarity allowed the application of a GWAS-like approach to map the donor genes that confer a donor mating identity phenotype. The mating identity genes map to the esx1 locus, expanding the central role of ESX-1 function in conjugation. The potential for DCT to instantaneously blend genomes will affect how we view mycobacterial evolution, and provide new tools for the facile manipulation of mycobacterial genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.