Abstract
Spaces of test functions and spaces of distributions (generalized measures) on infinite-dimensional spaces are constructed, which, in the finite-dimensional case, coincide with classical spaces $$\mathscr{D}$$ and $$\mathscr{D}'$$ . These distribution spaces contain generalized Feynman measures (but do not contain a generalized Lebesgue measure, which is not considered in this paper). For broad classes of infinite-dimensional differential equations in distribution spaces, the Cauchy problem has fundamental solutions. These results are much more definitive than those of A.Yu. Khrennikov’s and A.V. Uglanov’s pioneering works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.