Abstract
Vectors in numerical computation, i.e., arrays of numbers, often represent continuous functions. We would like to reflect this with types. One apparent obstacle is that spaces of functions are typically infinite-dimensional, while the code must run in finite time and memory. We argue that this can be overcome: even in an infinite-dimensional space, the vectors can in practice be stored in finite memory. However, dual vectors (corresponding essentially to distributions) require infinite data structure. The distinction is usually lost in the finite dimensional case, since dual vectors are often simply represented as vectors (by implicitly choosing a scalar product establishing the correspondence). However, we shall see that an explicit type-level distinction between functions and distributions makes sense and allows directly expressing useful concepts such as the Dirac distribution, which are problematic in the standard finite-resolution picture. The example implementation uses a very simple local basis that corresponds to a Haar Wavelet transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.