Abstract

AbstractWe study a distributionally robust reinsurance problem with the risk measure being an expectile and under expected value premium principle. The mean and variance of the ground-up loss are known, but the loss distribution is otherwise unspecified. A minimax problem is formulated with its inner problem being a maximization problem over all distributions with known mean and variance. We show that the inner problem is equivalent to maximizing the problem over three-point distributions, reducing the infinite-dimensional optimization problem to a finite-dimensional optimization problem. The finite-dimensional optimization problem can be solved numerically. Numerical examples are given to study the impacts of the parameters involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.