Abstract

Collaborative optimisation of system reserves and utilisation of renewable energy is an efficient approach to achieving robust optimal dispatch of integrated energy systems (IES). However, conventional robust dispatch methods are often too conservative and lack the ability to consider uncertainties such as renewable energy and contingency probabilities. To address these limitations, this paper proposes a distributionally robust dispatch model that co-optimises reserves and do-not-exceed (DNE) limits while considering these uncertainties. First, a deterministic optimisation model of IES is established with a minimum operational cost objective and security constraints. Next, a two-stage robust collaborative optimisation framework of IES is built, based on the Wasserstein measure, with random equipment faults represented by an adjustable ambiguity set. Finally, to overcome the computational challenges associated with robust approaches, duality theory and Karush-Kuhn-Tucker (KKT) conditions are used to convert the formulation into a mixed integer linear programming (MILP) model. The Simulation results on the modified IEEE 33-bus system demonstrate the effectiveness of the proposed model and solution methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.