Abstract

Cross-Language Text Categorization (CLTC) aims at producing a classifier for a target language when the only available training examples belong to a different source language. Existing CLTC methods are usually affected by high computational costs, require external linguistic resources, or demand a considerable human annotation effort. This paper presents a simple, yet effective, CLTC method based on projecting features from both source and target languages into a common vector space, by using a computationally lightweight distributional correspondence profile with respect to a small set of pivot terms. Experiments on a popular sentiment classification dataset show that our method performs favorably to state-of-the-art methods, requiring a significantly reduced computational cost and minimal human intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.