Abstract

Previous works on cross-lingual Named Entity Recognition (NER) have achieved great success. However, few of them consider the effect of language families between the source and target languages. In this study, we find that the cross-lingual NER performance of a target language would decrease when its source language is changed from the same (homogenous) into a different (heterogenous) language family with that target language. To improve the NER performance in this situation, we propose a novel cross-lingual NER framework based on self-distillation mechanism and Bilateral-Branch Network (SD-BBN). SD-BBN learns source-language NER knowledge from supervised datasets and obtains target-language knowledge from weakly supervised datasets. These two kinds of knowledge are then fused based on self-distillation mechanism for better identifying entities in the target language. We evaluate SD-BBN on 9 language datasets from 4 different language families. Results show that SD-BBN tends to outperform baseline methods. Remarkably, when the target and source languages are heterogenous, SD-BBN can achieve a greater boost. Our results might suggest that obtaining language-specific knowledge from the target language is essential for improving cross-lingual NER when the source and target languages are heterogenous. This finding could provide a novel insight into further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.