Abstract

By using a strip-cutting technique, we directly measured the lateral distribution of the transport critical current density of Ag sheathed (Bi, Pb) 2Sr 2Ca 2Cu 3O x tapes. For various long tapes prepared by the rolling technique with a critical current density of 23 000 A/cm 2 at 77 K and 0 T, the local critical current density of longitudinal 0.2 mm wide strips was reproducibly found to vary from 18 000 A/cm 2 at the center to 46 000 A/cm 2 at the sides of the filament. In all cases, a symmetrical behavior of j c at both sides of the central axis was observed. The value of the transport jc of 46 000 A/cm 2 at 77 K and 0 T in the external strips of Bi(2223) tapes produced by rolling processes comes quite close to the highest reproducible values reported so far on short pressed tapes. The field dependence of the critical current densities of the individual strips does not depend on their position inside the tape. Thus the observed difference in j c between central and external strips is not primarily due to a variation of the degree of texturing. A higher degree of compression and a lower amount of secondary phases were found for the external strips with the highest critical current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.