Abstract

With the increasing performance of the second-generation high-temperature superconducting (2G-HTS) tapes, the technology of all-REBa2Cu3O7-δ (REBCO, RE: rare earth) superconducting magnets has developed rapidly. However, the 2G-HTS magnet with hybrid cryocoolers constantly adjusts its operating temperature according to the actual demands, which involves the critical current when the magnet crosses variable temperature regions. In this paper, a modified ideal model based on the homogenization model is proposed, which can predict the critical current of 2G-HTS magnets more consistently. The in-field properties of REBCO tapes in variable temperature regions were tested by the physical property measurement system. Furthermore, the improved model was combined with the in-field properties of REBCO tapes to obtain the critical currents of a 2G-HTS multi-pancake (MP) coil at 20 K, 30 K, 65 K, and 77 K. The critical current of a multi-pancake coil at 77 K was experimentally verified. The modified ideal model uses the actual current density, which results are closer to the experimental results with an agreement of 97.3%. This new method proposed in this work is significant in quickly predicting critical currents for 2G-HTS magnets across variable temperature regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.